Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region.

نویسندگان

  • J M Andrade López
  • S M Lanno
  • J M Auerbach
  • E C Moskowitz
  • L A Sligar
  • P J Wittkopp
  • J D Coolon
چکیده

Drosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant's fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue-specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue-specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptomic Analysis of Octanoic Acid Response in Drosophila sechellia Using RNA-Sequencing

The dietary specialist fruit fly Drosophila sechellia has evolved to specialize on the toxic fruit of its host plant Morinda citrifolia Toxicity of Morinda fruit is primarily due to high levels of octanoic acid (OA). Using RNA interference (RNAi), prior work found that knockdown of Osiris family genes Osiris 6 (Osi6), Osi7, and Osi8 led to increased susceptibility to OA in adult D. melanogaster...

متن کامل

The genetic basis of Drosophila sechellia's resistance to a host plant toxin.

Unlike its close relatives, Drosophila sechellia is resistant to the toxic effects of the fruit of its host plant, Morinda citrifolia. Using 15 genetic markers, I analyze the genetic basis of D. sechellia's resistance to this fruit's primary toxin, octanoic acid. D. sechellia's resistance is dominant in F1 hybrids between it and its sister species D. simulans. All chromosomes, except the Y and ...

متن کامل

Odorant-Binding Proteins OBP57d and OBP57e Affect Taste Perception and Host-Plant Preference in Drosophila sechellia

Despite its morphological similarity to the other species in the Drosophila melanogaster species complex, D. sechellia has evolved distinct physiological and behavioral adaptations to its host plant Morinda citrifolia, commonly known as Tahitian Noni. The odor of the ripe fruit of M. citrifolia originates from hexanoic and octanoic acid. D. sechellia is attracted to these two fatty acids, where...

متن کامل

A locus in Drosophila sechellia affecting tolerance of a host plant toxin.

Many insects feed on only one or a few types of host. These host specialists often evolve a preference for chemical cues emanating from their host and develop mechanisms for circumventing their host's defenses. Adaptations like these are central to evolutionary biology, yet our understanding of their genetics remains incomplete. Drosophila sechellia, an emerging model for the genetics of host s...

متن کامل

Can a Taste for Poison Drive Speciation?

0955 The endless struggle for survival in nature inevitably boils down to fi nding food and eluding predators. To avoid the latter, many plants produce chemical weapons to discourage predators. A sound strategy overall, but the rules of coevolutionary war suggest that an herbivore will evolve resistance to the toxic defenses of plants. The fruit fl y Drosophila sechellia , for example, has a pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular ecology

دوره 26 4  شماره 

صفحات  -

تاریخ انتشار 2017